
High-End Audio Playback with the Parallella

1. Introduction

This project uses two techniques which complement each other to greatly improve the audio

reproduction of standard CDs:

 Benefits of Bi-Amping from Rod Elliott

 http://sound.westhost.com/bi-amp.htm

 Digital Room Correction from Denis Sbragion

http://drc-fir.sourceforge.net/

Tools needed

1. Daughter board with SPDIF in/out interfaces, ADC and high-precision clock (see

below)

2. Measurement microphone (and possibly microphone pre-amp)

3. Crossworks for Arm toolchain and a Crossworks supported JTAG probe

4. CoolEdit (Adobe Audition) or similar PC utility

5. SPL (Sound Pressure Level) meter

6. Micro-SD card (i.e. standard 4GB)

Note: if the amplifier(s) do not have a SPDIF input, it will be necessary to add a DAC

with SPDIF interface. I have not tried it but this one looks pretty good to me:

http://www.beis.de/Elektronik/ADDA24QS/DA24QSDS.html

2. Hardware

A daughter board should be made to include:

1. Electrical interface for SPDIF input and output(s)

(like the one found in Appendix at http://sound.westhost.com/project85.htm)

2. PCM3052 AD converter with high-precision clock

Originally a separate module was built but it should be on the daughter board instead

because both SPDIF input and output should use the same clock. Then instead of

having a dedicated 8-bit MCU to set the ADC via I2C interface, it can be done

directly with the Xilinx Zynq. The original module design files are available in the

Audio Playback thread of the Parallella forum.

http://sound.westhost.com/bi-amp.htm
http://sound.westhost.com/bi-amp.htm
http://drc-fir.sourceforge.net/
http://drc-fir.sourceforge.net/
http://drc-fir.sourceforge.net/
http://www.beis.de/Elektronik/ADDA24QS/DA24QSDS.html
http://sound.westhost.com/project85.htm

Note1: the Xilinx Zynq does not generate a lot of heat when running this application so the

Parallella heatsink is sufficient (i.e. no fan needed)

Note2: this application does not use the Epiphany chip

3. FPGA

 copy "HEAP_para7010_headless" and "ip_repo" directories in Vivado projects sub-

directory (i.e. C:\Users\pat\project2015_1)

 open “HEAP.xpr” with Vivado 2015.1

 set the proper constraints in "PL_pins.xdc" if necessary

 Generate Bitstream and Export Hardware

 open SDK 2015.1

 File - New - Project - Hardware Platform Specification:

create “curPL” with bitstream (i.e.

C:\Users\pat\project2015_1\HEAP_para7010_headless\HEAP.sdk\design_1_wrapper.

hdf)

 Then generate the proper BSPs: File - New - Application Project

create “test” (default with ps7_cortex9_0 and hello_world)

 build “test”

 Create Zynq Boot Image (import “test.bif” from the bootimage directory)

 Program Flash

Note: “Program Flash” will write the FSBL and the new FPGA bitstream in QSPI flash so that the

FPGA will be programmed with that bitstream on each hard reset

Warning: “Program Flash” will erase the QSPI flash Adapteva factory code. To revert to the original

Parallella setting, a “Program Flash” with the factory code will need to be performed

4. ARM

4.1. Measurements

CAUTION:

Use extreme care and make sure you understand “DRCGuidev1.0.pdf” well before

going ahead

*DRCGuidev1.0.pdf is a guide written by Jones Rush that describes the DRC setup when

using a PC-based audio playback device instead of the Parallella one

Note1: during measurements I preferred to split some operations in order to closely

monitor and double-check the intermediate results, but it should be pretty

straightforward to wrap more or less everything in one go

Note2: there is no user interface. Typically you need to set parameters in the main.c

audioTask() function (type/track/bypassMeasure), build the application and then

execute it to perform a given task

Note3: both the target java script “Zynq_7000_Target.js” and the Zynq-PS initialization

file “init_ps7_7010.bin” need to be accessed from an absolute reference path from

Crossworks, so you must first set to your own path:

- In Project Properties – Target Script File for “Zynq_7000_Target.js”

- In function DDRReset() of “Zynq_7000_Target.js” for

“init_ps7_7010.bin”

 open “cdplayer_7010.hzp” solution with Crossworks

 for bi-amping add “XOVER” to Preprocessor definitions (in Project Properties)

 for room correction add “DRC” to Preprocessor definitions (in Project Properties)

 in main.c function: audioTask() set:

SourceType type = LOGSWEEP_SIN; // WAVEFILE/CDPLAYER/LOGSWEEP_SIN

SourceTrack track = STEREO_LEFT; // STEREO_LEFT/STEREO_RIGHT

(LOGSWEEP_SIN only)

int bypassMeasure = FALSE; // if TRUE do LOGSWEEP_SIN IR conversion only

(testing)

 if using bi-amping, set the “cutoff1” parameter in main.c function: paramsInit()

(currently set to 200Hz)

 build the solution

 connect a cable to loopback SPDIF output to input

 run the application (JTAG probe connected to the Parallella)

 the message “audioTask status = 0” should be displayed when the cycle is completed

after about one minute

 Insert the SD card in a pc and check the “MSLEFT.WAV” file with a utility like

CoolEdit (blank/trigger/logsweep/blank)

Note: the loopback test will only work when SourceTrack track = STEREO_LEFT;

Warning: when running measurements in THUMB Debug, the program may hit the “undef_handler”

because the bandwidth is a little too short

Volume level adjustments

CAUTION:

Setting the proper volume level is definitely the trickiest part of the whole procedure:

too low and the SNR (Signal Noise Ratio) will not be good enough, too high and the

tweeter will blow.

Tweeters are delicate piece of equipment and there are at least 3 ways to destroy one:

 Apply low frequencies (i.e. below the tweeter frequency range)

 Apply a volume level too high

 Apply a DC component

Please refer to the “DRCGuidev1.0.pdf” for setting guidelines.

 Starting with a low level volume, output a logsweep and measure the SPL at the

listening position (tweeters are pretty directional and should be positioned roughly at

the listener’s ears height)

 Increase the level for each logsweep sequence until the SPL meter returns a maximum

of 85dB at peaks

 Adjust the microphone pre-amp in order to get the maximum dynamic range without

clipping

 Adjust each amplifier volume level so that the SPL is roughly identical for all

speakers

Delay adjustments (for bi-amping)

 For respectively SourceTrack track = STEREO_LEFT; and STEREO_RIGHT

 Measure the logsweep on each individual speaker (turn off irrelevant amps)

 Convolve with inverse logsweep to get the impulse response (int bypassMeasure =

TRUE;)

 With CoolEdit note the sample position of the first pulse highest value

- the first pulse, NOT the biggest one (also it could be negative)

- eventually confirm by measuring the distance between speakers and calculating it:

 1 second -> 44100 samples -> 343 meters

 set delays accordingly in main.c: initDelay() in order to time-align each speakers to

the slowest one

Note: speakers time-alignment is important and should be done very carefully

DRC

After full speaker measurements in MSLEFT.wav and MSRIGHT.wav:

 with CoolEdit locate trigger recorded peak after trigger sample 0xa55a

(eventually confirm by checking 1024*1024*2 samples after and look for another

small peak)

In my case, the speakers being roughly 2m from the listening position, the trigger

peak was 825 samples after the trigger 0xa55a (corresponds to the recorded sound

generated by the trigger)

 set bypassMeasure to TRUE

 build and run in THUMB Debug

 in ir(char *filename, int nSamples) (ir.cpp) insert a breakpoint at ”if ((pos =

locateSinewave(...”

 after executing the function, manually set “pos” to the value + 1 previously found

with CoolEdit (i.e. 826 in my case)

 resume program execution until completion (i.e. “audioTask status = 0”)

 do the same for both track = STEREO_LEFT and STEREO_RIGHT

 copy IRLEFT.pcm and IRRIGHT.pcm to PC

 download and unzip drc-3.2.1 in PC

 in D:\Audio\drc-3.2.1\sample edit "normal-44.1.drc" to point to: “BCInFile =

irleft.pcm”

 run "drc normal-44.1.drc" and after completion rename the created “rps.pcm” to

“drcLeft.pcm”

 do the same with IRRIGHT.pcm

 with CoolEdit create a “drc.wav” file for which left track is “drcLeft.pcm” and right

track is “drcRight.pcm”

 copy “drc.wav” to the SD card root directory

 generate 10s of stereo white noise, normalized to 100%, copy drc.wav to clipboard

and Aurora convolve white noise with clipboard (see details in “DRCGuidev1.0.pdf”)

 use resulting value to set convolverAdjust in paramsInit() (in main.c)

 change to "SourceType type = CDPLAYER;"

 rebuild cdplayer_7010 in THUMB Release

 copy resulting “cdplayer_7010.elf” into the bootimage directory

in SDK 2015.1

 Create Zynq Boot Image (import “cdplayer_para.bif” from bootimage directory)

 Program Flash

Connect a CD player to the SPDIF input, sit back and enjoy the music!

